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Abstract

Stability is a desirable characteristic for linear dynamical systems, but it is often ignored by algo-
rithms that learn these systems from data. We propose a novel method for learning stable linear
dynamical systems: we formulate an approximation of the problem as a convex program, start
with a solution to a relaxed version of the program, and incrementally add constraints to improve
stability. Rather than continuing to generate constraints until we reach a feasible solution, we test
stability at each step; because the convex program is only an approximation of the desired problem,
this early stopping rule can yield a higher-quality solution. We apply our algorithm to the task of
learning dynamic textures from image sequences as well as to modeling biosurveillance drug-sales
data. The constraint generation approach leads to noticeable improvement in the quality of sim-
ulated sequences. We compare our method to those of Lacy and Bernstein [1, 2], with positive
results in terms of accuracy, quality of simulated sequences, and efficiency.





1 Introduction

Many problems in machine learning involve sequences of real-valued multivariate observations.
To model the statistical properties of such data, it is often sensible to assume each observation to be
correlated to the value of an underlying latent variable, or state, that is evolving over the course of the
sequence. In the case where the state is real-valued and the noise terms are assumed to be Gaussian,
the resulting model is called a linear dynamical system (LDS), also known as a Kalman Filter [1].
LDSs are an important tool for modeling time series in engineering, controls and economics as well
as the physical and social sciences.

Let {λi(M)}n
i=1 denote the eigenvalues of an n × n matrix M in decreasing order of mag-

nitude, {νi(M)}n
i=1 the corresponding unit-length eigenvectors, and define its spectral radius

ρ(M) ≡ |λ1(M)|. An LDS with dynamics matrix A is stable if all of A’s eigenvalues have mag-
nitude at most 1, i.e., ρ(A) ≤ 1. Standard algorithms for learning LDS parameters do not enforce
this stability criterion, learning locally optimal values for LDS parameters by gradient descent [2],
Expectation Maximization (EM) [3] or least squares on a state sequence estimate obtained by sub-
space identification methods, as described in Section 3.1. However, when learning from finite data
samples, the least squares solution may be unstable even if the system is stable [4]. The drawback
of ignoring stability is most apparent when simulating long sequences from the system in order to
generate representative data or infer stretches of missing values.

We propose a convex optimization algorithm for learning the dynamics matrix while guaranteeing
stability. An estimate of the underlying state sequence is first obtained using subspace identifica-
tion. We then formulate the least-squares problem for the dynamics matrix as a quadratic program

(QP) [5], initially without constraints. When this QP is solved, the estimate Â obtained may be
unstable. However, any unstable solution allows us to derive a linear constraint which we then add
to our original QP and re-solve. The above two steps are iterated until we reach a stable solution,
which is then refined by a simple interpolation to obtain the best possible stable estimate.

Our method can be viewed as constraint generation [6] for an underlying convex program with a
feasible set of all matrices with singular values at most 1, similar to work in control systems [7].
However, we terminate before reaching feasibility in the convex program, by checking for matrix
stability after each new constraint. This makes our algorithm less conservative than previous meth-
ods for enforcing stability since it chooses the best of a larger set of stable dynamics matrices. The
difference in the resulting stable systems is noticeable when simulating data. The constraint gener-
ation approach also achieves much greater efficiency than previous methods in our experiments.

One application of LDSs in computer vision is learning dynamic textures from video data [8]. An
advantage of learning dynamic textures is the ability to play back a realistic-looking generated se-
quence of any desired duration. In practice, however, videos synthesized from dynamic texture
models can quickly degenerate because of instability in the underlying LDS. In contrast, sequences
generated from dynamic textures learned by our method remain “sane” even after arbitrarily long
durations. We also apply our algorithm to learning baseline dynamic models of over-the-counter
(OTC) drug sales for biosurveillance, and sunspot numbers from the UCR archive [9]. Comparison
to the best alternative methods [7, 10] on these problems yields positive results.

2 Related Work
Linear system identification is a well-studied subject [2]. Within this area, subspace identification
methods [11] have been very successful. These techniques first estimate the model dimensionality
and the underlying state sequence, and then derive parameter estimates using least squares. Within
subspace methods, techniques have been developed to enforce stability by augmenting the extended
observability matrix with zeros [4] or adding a regularization term to the least squares objective [12].

All previous methods were outperformed by Lacy and Bernstein [7], henceforth referred to as LB-1.
They formulate the problem as a semidefinite program (SDP) whose objective minimizes the state
sequence reconstruction error, and whose constraint bounds the largest singular value by 1. This
convex constraint is obtained by rewriting the nonlinear matrix inequality In−AAT % 0 as a linear
matrix inequality1, where In is the n× n identity matrix. Here, & 0 (% 0) denotes positive (semi-)

1This bounds the top singular value by 1 since it implies ∀x xT (In − AAT )x ≥ 0 ⇒ ∀x xT AAT x ≤
xT x ⇒ for ν = ν1(AAT ) and λ = λ1(AAT ), νT AAT ν ≤ νT ν ⇒ νT λν ≤ 1 ⇒ σ2

1(A) ≤ 1 since
νT ν = 1 and σ2

1(M) = λ1(MMT ) for any square matrixM .



definiteness. The existence of this constraint also proves the convexity of the σ1 ≤ 1 region. This
condition is sufficient but not necessary, since a matrix that violates this condition may still be stable.

A follow-up to this work by the same authors [10], which we will call LB-2, attempts to overcome
the conservativeness of LB-1 by approximating the Lyapunov inequalities P − APAT & 0, P & 0
with the inequalities P − APAT − δIn % 0, P − δIn % 0, δ > 0. These inequalities hold iff the
spectral radius is less than 1.2 However, the approximation is achieved only at the cost of inducing a
nonlinear distortion of the objective function by a problem-dependent reweighting matrix involving
P , which is a variable to be optimized. In our experiments, this causes LB-2 to perform worse
than LB-1 (for any δ) in terms of the state sequence reconstruction error, even while obtaining
solutions outside the feasible region of LB-1. Consequently, we focus on LB-1 in our conceptual
and qualitative comparisons as it is the strongest baseline available. However, LB-2 is more scalable
than LB-1, so quantitative results are presented for both.

To summarize the distinction between constraint generation, LB-1 and LB-2: it is hard to have both
the right objective function (reconstruction error) and the right feasible region (the set of stable
matrices). LB-1 optimizes the right objective but over the wrong feasible region (the set of matrices
with σ1 ≤ 1). LB-2 has a feasible region close to the right one, but at the cost of distorting its
objective function to an extent that it fares worse than LB-1 in nearly all cases. In contrast, our
method optimizes the right objective over a less conservative feasible region than that of any previous
algorithm with the right objective, and this combination is shown to work the best in practice.

3 Linear Dynamical Systems

The evolution of a linear dynamical system can be described by the following two equations:

xt+1 = Axt + wt

yt = Cxt + vt (1)

Time is indexed by the discrete3 variable t. Here xt denotes the hidden states in Rn, yt the ob-
servations in Rm, and wt and vt are zero-mean normally distributed state and observation noise
variables. Assume the initial state x(0) = x0. The parameters of the system are the dynamics
matrix A ∈ Rn×n, the observation model C ∈ Rm×n, and the noise covariance matrices Q and
R. Note that we are learning uncontrolled linear dynamical systems, though, as in previous work,
control inputs can easily be incorporated into the objective function and convex program.

Linear dynamical systems can also be viewed as probabilistic graphical models. The standard LDS
filtering and smoothing inference algorithms [1, 15] are instantiations of the junction tree algorithm
for Bayesian Networks (see, for example, [16]).

We follow the subspace identification literature in estimating all parameters other than the dynamics
matrix. A clear and concise exposition of the required techniques is presented in Soatto et al. [8],
which we summarize below. We use subspace identification methods in our experiments for unifor-
mity with previous work we are building on (in the control systems literature) and with work we are
comparing to ([8] on the dynamic textures data).

3.1 Learning Model Parameters by Subspace Methods

Subspace methods calculate LDS parameters by first decomposing a matrix of observations to yield
an estimate of the underlying state sequence. The most straightforward such technique is used here,
which relies on the singular value decomposition (SVD) [13]. See [11] for variations.

Let Y1:τ = [y1 y2 . . . yτ ] ∈ Rm×τ and X1:τ = [x1 x2 . . . xτ ] ∈ Rn×τ . D denotes the matrix
of observations which is the input to SVD. One typical choice for D is D = Y1:τ ; we will discuss
others below. In the ideal case of abundant data, D should comprise the mean of a large number
of observation sequences. SVD yields D ≈ UΣV T where U ∈ Rm×n and V ∈ Rτ×n have
orthonormal columns {ui} and {vi}, and Σ = diag{σ1, . . . , σn} contains the singular values. The

2For a proof sketch, see [13] pg. 410.
3In continuous-time dynamical systems, the derivatives are specified as functions of the current state. They

can be converted to discrete-time systems. If we could be guaranteed that the system we’re trying to recover
is positive real, we could use an exact method due to [14], but there’s no reason to expect positive realness in
many cases of interest.



1000 200

Sunspot numbersA. B. C.

0

300

Figure 1: A. Sunspot data, sampled monthly for 200 years. Each curve is a month, the x-axis is over
years. B. First two principal components of a 1-observation Hankel matrix. C. First two principal
components of a 12-observation Hankel matrix, which better reflect temporal patterns in the data.

model dimension n is determined by keeping all singular values of D above a threshold. We obtain
estimates of C and X:

Ĉ = U X̂ = ΣV T (2)

See [8] for an explanation of why these estimates satisfy certain canonical model assumptions. X̂
is referred to as the extended observability matrix in the control systems literature; the tth column
of X̂ represents an estimate of the state of our LDS at time t. The least squares estimate of A is:

Â = arg min
A

∥∥AX0:τ−1 −X1:τ

∥∥2

F
= X1:τX†

0:τ−1 (3)

where ‖ · ‖F denotes the Frobenius norm and
† denotes the Moore-Penrose inverse. Eq. (3) asks Â

to minimize the error in predicting the state at time t + 1 from the state at time t. Given the above
estimates Â and Ĉ, the covariance matrices Q̂ and R̂ can be estimated directly from residuals.

3.2 Designing the Observation Matrix

In the decomposition above, we chose each column of D to be the observation vector for a single
time step. The columns of U therefore represent the directions of greatest variability in observations,
and the estimated hidden state x̂t at time t (the tth column of ΣV T ) contains the optimal weights for
reconstructing the observation at time t (tth column ofD) using the basis U . We expect the columns
of ΣV T to be good vectors to use as hidden states, since state t allows us to predict observation yt

accurately.

Suppose that instead we set D to be a matrix of the form

D =





y1 y2 y3 · · · yτ

y2 y3 y4 · · · yτ+1

y3 y4 y5 · · · yτ+2
...

...
...

. . .
...

yd yd+1 yd+2 · · · yd+τ−1





md×τ

A matrix of this form, with each block of rows equal to the previous block but shifted by a constant
number of columns, is called a block Hankelmatrix [2]. We say “d-observation Hankel matrix of size
τ” to mean the data matrix D ∈ Rmd×τ with d length-m observation vectors per column. Assume
that, as is desirable, we have a large number of observation sequences and can work with their mean.
Then, if the observations truly arise from an LDS, D is seen to be low-rank in expectation. Let x̄t

denote E(xt). Then:

E(D) =





Cx̄1 Cx̄2 Cx̄3 · · ·
Cx̄2 Cx̄3 Cx̄4 · · ·
Cx̄3 Cx̄4 Cx̄5 · · ·
...

...
...

. . .





md×τ

=





Cx̄1 Cx̄2 Cx̄3 · · ·
CAx̄1 CAx̄2 CAx̄3 · · ·
CA2x̄1 CA2x̄2 CA2x̄3 · · ·
...

...
...

. . .





md×τ

=





C
CA
CA2

CA3

...





md×n

· [ x̄1 x̄2 x̄3 x̄4 · · · ]n×τ ≈ U · ΣV T



With the above block Hankel matrix as input, the SVD will choose the columns of U to be an
optimal basis for compressing and reconstructing sequences of d observations into the future instead
of single observations. That is, the tth column of ΣV T will be the best vector of n numbers for
predicting the observations yt . . . yt+d−1.

Stacking observations causes each state to incorporate more information about the future, since x̂t

now represents coefficients reconstructing yt as well as other observations in the future. However

the observation model estimate must now be Ĉ = U( : , 1 : m), i.e., the submatrix consisting of
the first m columns of U , because U( : , 1 : m)x̂t = ŷt for any t, where ŷt denotes a reconstructed
observation.

Having multiple observations per column inD is particularly helpful when the underlying dynamical
system is known to have periodicity. For example, Figure 1(A) shows 200 years of sunspot numbers,
with each month modeled as a separate variable. Sunspots are known to have two periods, the
longer of which is 11 years. When we perform SVD on a 12-observation Hankel matrix, the first
two columns of U , i.e. the first two principal components, resemble the sine and cosine bases
(Figure 1(B)), and the corresponding state variables therefore are the coefficients needed to combine
these bases so as to reconstruct 12 years of the original sinusoid-like data, which captures their
periodicity. This is in contrast to the bases obtained by SVD on a 1-observation Hankel matrix
(Figure 1(C)), which reconstruct just the variation within a single year.

4 The Algorithm

The estimation procedure in Section 3.1 does not enforce stability in Â. To account for stability, we
first formulate the dynamics matrix learning problem as a quadratic program with a feasible set that
includes the set of stable dynamics matrices. Then we demonstrate how instability in its solutions
can be used to generate constraints that restrict this feasible set appropriately. As a final step, the
solution is refined to be as close as possible to the least-squares estimate while remaining stable.
The overall algorithm is illustrated in Figure 4.2(A). We now explain the algorithm in more detail.

4.1 Formulating the Objective

The least squares problem in Eq. (3) can be written as:

Â = arg minA J2(A)

= arg minA

∥∥AX0:τ−1 −X1:τ

∥∥2

F

= arg minA

{
tr
[
(AX0:τ−1−X1:τ )T(AX0:τ−1−X1:τ )

]}

= arg minA

{
tr

(
AX0:τ−1XT

0:τ−1A
T
)

−2tr
(
X0:τ−1XT

1:τA
)

+ tr
(
XT

1:τX1:τ

)}

= arg mina

{
aTPa− 2 qTa + r

}
(4)

where a ∈ Rn2×1, q ∈ Rn2×1, P ∈ Rn2×n2
and r ∈ R are defined as:

a = vec(A) = [A11 A21 A31 · · · Ann]T P = In ⊗
(
X0:τ−1X

T
0:τ−1

)

q = vec(X0:τ−1X
T
1:τ ) r = tr

(
XT

1:τX1:τ

)
(5)

In is the n × n identity matrix and ⊗ denotes the Kronecker product. Note that P is a symmetric
nonnegative-definite matrix. The objective function in (4) is a quadratic function of a.

4.2 Generating Constraints

The quadratic objective function above is equivalent to the least squares problem of Eq. (3). Its
feasible set is the space of all n × n matrices, regardless of their stability. When its solution yields
an unstable matrix, the spectral radius of Â (i.e. |λ1(Â)|) is greater than 1. Ideally we would like to
use Â to calculate a convex constraint on the spectral radius. However, consider the class of 2 × 2
matrices [17]: Eα,β = [ 0.3 α ;β 0.3 ]. The matrices E10,0 and E0,10 are stable with λ1 = 0.3, but
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Figure 2: (A): Conceptual depiction of the space of n × n matrices. The region of stability (Sλ) is
non-convex while the smaller region of matrices with σ1 ≤ 1 (Sσ) is convex. The elliptical contours

indicate level sets of the quadratic objective function of the QP. Â is the unconstrained least-squares
solution to this objective. ALB-1 is the solution found by LB-1 [7]. One iteration of constraint
generation yields the constraint indicated by the line labeled ‘generated constraint’, and (in this
case) leads to a stable solution A∗. The final step of our algorithm improves on this solution by

interpolating A∗ with the previous solution (in this case, Â) to obtain A∗final. (B): The actual stable

and unstable regions for the space of 2×2matricesEα,β = [ 0.3 α ; β 0.3 ], with α, β ∈ [−10, 10].
Constraint generation is able to learn a nearly optimal model from a noisy state sequence of length
7 simulated from E0,10, with better state reconstruction error than either LB-1 or LB-2.

their convex combination γE10,0 + (1 − γ)E0,10 is unstable for (e.g.) γ = 0.5 (Figure (B)). This
shows that the set of stable matrices is non-convex for n = 2, and in fact this is true for all n > 1.
We turn instead to the largest singular value, which is a closely related quantity since

σmin(Â) ≤ |λi(Â)| ≤ σmax(Â) ∀i = 1, . . . , n [13]

Therefore every unstable matrix has a singular value greater than one, but the converse is not neces-
sarily true. Moreover, the set of matrices with σ1 ≤ 1 is convex4. Figure 4.2(A) conceptually depicts
the non-convex region of stability Sλ and the convex region Sσ with σ1 ≤ 1 in the space of all n×n
matrices for some fixed n. The difference between Sσ and Sλ can be significant. Figure 4.2(B)
depicts these regions for Eα,β with α,β ∈ [−10, 10]. The stable matrices E10,0 and E0,10 reside
at the edges of the figure. While results for this class of matrices vary based on the instance used,
the constraint generation algorithm described below is able to learn a nearly optimal model from a
noisy state sequence of τ = 7 simulated from E0,10, with better state reconstruction error than LB-1
and LB-2.

Let Â = ŨΣ̃Ṽ T by SVD, where Ũ = [ũi]ni=1 and Ṽ = [ṽi]ni=1 and Σ̃ = diag{σ̃1, . . . , σ̃n}. Then:
Â = Ũ Σ̃Ṽ T ⇒ Σ̃ = ŨT ÂṼ ⇒ σ̃1(Â) = ũT

1 Âṽ1 = tr(ũT
1 Âṽ1) (6)

Therefore, instability of Â implies that:

σ̃1 > 1 ⇒ tr
(
ũT

1 Âṽ1

)
> 1 ⇒ tr

(
ṽ1ũ

T
1 Â

)
> 1 ⇒ gT â > 1 (7)

Here g = vec(ũ1ṽT
1 ). Since Eq. (7) arose from an unstable solution of Eq. (4), g is a hyperplane

separating â from the space of matrices with σ1 ≤ 1. We use the negation of Eq. (7) as a constraint:

gT â ≤ 1 (8)
4.3 Computing the Solution

The overall quadratic program can be stated as:

minimize aTPa− 2 qTa + r
subject to Ga ≤ h

(9)

with a, P , q and r as defined in Eqs. (5). {G,h} define the set of constraints, and are initially
empty. The QP is invoked repeatedly until the stable region, i.e. Sλ, is reached. At each iteration,
we calculate a linear constraint of the form in Eq. (8), add the corresponding gT as a row in G, and
augment h with 1. Note that we will almost always stop before reaching the feasible region Sσ .

4Since σ1(M) ≡ maxu,v:‖u‖2=1,‖v‖2=1 uT Mv, so if σ1(M1) ≤ 1 and σ1(M2) ≤ 1, then for all convex
combinations, σ1(γM1 + (1− γ)M2) = maxu,v:‖u‖2=1,‖v‖2=1 γuT M1v + (1− γ)uT M2v ≤ 1.



CG LB-1 LB-1∗ LB-2 CG LB-1 LB-1∗ LB-2

steam (n = 10) fountain (n = 10)
|λ1| 1.000 0.993 0.993 1.000 0.999 0.987 0.987 0.997
σ1 1.036 1.000 1.000 1.034 1.051 1.000 1.000 1.054

ex(%) 45.2 103.3 103.3 546.9 0.1 4.1 4.1 3.0
time 0.45 95.87 3.77 0.50 0.15 15.43 1.09 0.49

steam (n = 20) fountain (n = 20)
|λ1| 0.999 — 0.990 0.999 0.999 — 0.988 0.996
σ1 1.037 — 1.000 1.062 1.054 — 1.000 1.056

ex(%) 58.4 — 154.7 294.8 1.2 — 5.0 22.3
time 2.37 — 1259.6 33.55 1.63 — 159.85 5.13

steam (n = 30) fountain (n = 30)
|λ1| 1.000 — 0.988 1.000 1.000 — 0.993 0.998
σ1 1.054 — 1.000 1.130 1.030 — 1.000 1.179

ex(%) 63.0 — 341.3 631.5 13.3 — 14.9 104.8
time 8.72 — 23978.9 62.44 12.68 — 5038.94 48.55

steam (n = 40) fountain (n = 40)
|λ1| 1.000 — 0.989 1.000 1.000 — 0.991 1.000
σ1 1.120 — 1.000 1.128 1.034 — 1.000 1.172

ex(%) 20.24 — 282.7 768.5 3.3 — 4.8 21.5
time 5.85 — 79516.98 289.79 61.9 — 43457.77 239.53

Table 1: Quantitative results on the dynamic textures data for different numbers of states n. CG is our
algorithm, LB-1and LB-2 are competing algorithms, and LB-1∗ is a simulation of LB-1 using our
algorithm by generating constraints until we reach Sσ, since LB-1 failed for n > 10 due to memory
limits. ex is percent difference in squared reconstruction error as defined in Eq. (10). Constraint
generation, in all cases, has lower error and faster runtime.

4.4 Refinement

Once a stable matrix is obtained, it is possible to refine this solution. We know that the last constraint
caused our solution to cross the boundary of Sλ, so we interpolate between the last solution and
the previous iteration’s solution using binary search to look for a boundary of the stable region,
in order to obtain a better objective value while remaining stable. This results in a stable matrix
with top eigenvalue equal to 1. In principle, such an interpolation could be attempted between the
least squares solution and any stable solution. However, the stable region can be highly complex,
and there may be several folds and boundaries of the stable region in the interpolated area. In our
experiments (not shown), interpolating from the Lacy-Bernstein solution yielded worse results.

5 Experiments

For learning the dynamics matrix, we implemented5 least squares, constraint generation (using
quadprog), LB-1 [7] and LB-2 [10] (using CVX with SeDuMi) in Matlab on a 3.2 GHz Pen-
tium with 2 GB RAM. Note that these algorithms give a different result from the basic least-squares
system identification algorithm only in situations where the least-squares model is unstable. How-
ever, least-squares LDSs trained in scarce-data scenarios are unstable for almost any domain, and
some domains lead to unstable models up to the limit of available data (e.g. the steam dynamic
textures in Section 5.1). The goals of our experiments are to: (1) examine the state evolution and
simulated observations of models learned using our method, and compare them to previous work;
and (2) compare the algorithms in terms of reconstruction error and efficiency. The error metric used
for the quantitative experiments when evaluating matrix A∗ is

ex(A∗) = 100×
(
J2(A∗)− J2(Â)

)
/J2(Â) (10)

i.e. percent increase in squared reconstruction error compared to least squares, with J(·) as defined
in Eq. (4). We apply these algorithms to learning dynamic textures from the vision domain (Sec-
tion 5.1), as well as OTC drug sales counts and sunspot numbers (Section 5.2).

5Source code and data are online at http://www.select.cs.cmu.edu/projects/stableLDS
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Figure 3: Dynamic textures. A. Samples from the original steam sequence and the fountain
sequence. B. State evolution of synthesized sequences over 1000 frames (steam top, fountain
bottom). The least squares solutions display instability as time progresses. The solutions obtained
using LB-1 remain stable for the full 1000 frame image sequence. The constraint generation solu-
tions, however, yield state sequences that are stable over the full 1000 frame image sequence without
significant damping. C. Samples drawn from a least squares synthesized sequences (top), and sam-
ples drawn from a constraint generation synthesized sequence (bottom). Images for LB-1 are not
shown. The constraint generation synthesized steam sequence is qualitatively better looking than
the steam sequence generated by LB-1, although there is little qualitative difference between the
two synthesized fountain sequences.

5.1 Stable Dynamic Textures

Dynamic textures in vision can intuitively be described as models for sequences of images that
exhibit some form of low-dimensional structure and recurrent (though not necessarily repeating)
characteristics, e.g. fixed-background videos of rising smoke or flowing water. Treating each frame
of a video as an observation vector of pixel values yt, we learned dynamic texture models of two
video sequences: the steam sequence, composed of 120 × 170 pixel images, and the fountain
sequence, composed of 150 × 90 pixel images, both of which originated from the MIT temporal
texture database (Figure 3(A)). We use parameters τ = 80, n = 15, and d = 10. Note that, while
the observations are the raw pixel values, the underlying state sequence we learn has no a priori
interpretation.

An LDS model of a dynamic texture may synthesize an “infinitely” long sequence of images by
driving the model with zero mean Gaussian noise. Each of our two models uses an 80 frame training
sequence to generate 1000 sequential images in this way. To better visualize the difference between
image sequences generated by least-squares, LB-1, and constraint generation, the evolution of each
method’s state is plotted over the course of the synthesized sequences (Figure 3(B)). Sequences
generated by the least squares models appear to be unstable, and this was in fact the case; both
the steam and the fountain sequences resulted in unstable dynamics matrices. Conversely, the
constrained subspace identification algorithms all produced well-behaved sequences of states and
stable dynamics matrices (Table 1), although constraint generation demonstrates the fastest runtime,
best scalability, and lowest error of any stability-enforcing approach.

A qualitative comparison of images generated by constraint generation and least squares (Fig-
ure 3(C)) indicates the effect of instability in synthesized sequences generated from dynamic texture
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Figure 4: Bar graphs illustrating decreases in objective function value relative to the least squares
solution (A,B) and the running times (C,D) for different stable LDS learning algorithms on the
fountain and steam textures respectively, based on the corresponding columns of Table 1.

models. While the unstable least-squares model demonstrates a dramatic increase in image contrast
over time, the constraint generation model continues to generate qualitatively reasonable images.
Qualitative comparisons between constraint generation and LB-1 indicate that constraint generation
learns models that generate more natural-looking video sequences6 than LB-1.

Table 1 demonstrates that constraint generation always has the lowest error as well as the fastest
runtime. The running time of constraint generation depends on the number of constraints needed to
reach a stable solution. Note that LB-1 is more efficient and scalable when simulated using constraint
generation (by adding constraints until Sσ is reached) than it is in its original SDP formulation.

Figure 4 shows bar graphs comparing reconstruction errors and running times of these algorithms,
based on columns of Table 1, illustrating the large difference in efficiency and accuracy between
constraint generation and competing methods.

5.2 Stable Baseline Models for Biosurveillance

We examine daily counts of OTC drug sales in pharmacies, obtained from the National Data Re-
tail Monitor (NDRM) collection [18]. The counts are divided into 23 different categories and are
tracked separately for each zipcode in the country. We focus on zipcodes from a particular Ameri-
can city. The data exhibits 7-day periodicity due to differential buying patterns during weekdays and
weekends. We isolate a 60-day subsequence where the data dynamics remain relatively stationary,

6See videos at http://www.select.cs.cmu.edu/projects/stableLDS



and attempt to learn LDS parameters to be able to simulate sequences of baseline values for use in
detecting anomalies.

We perform two experiments on different aggregations of the OTC data, with parameter values n =
7, d = 7 and τ = 14. Figure 5(A) plots 22 different drug categories aggregated over all zipcodes,
and Figure 5(B) plots a single drug category (cough/cold) in 29 different zipcodes separately. In both
cases, constraint generation is able to use very little training data to learn a stable model that captures
the periodicity in the data, while the least squares model is unstable and its predictions diverge over
time. LB-1 learns a model that is stable but overconstrained, and the simulated observations quickly
drift from the correct magnitudes. We also tested the algorithms on the sunspots data (Figure 4.2(C))
with parameters n = 7, d = 18 and τ = 50, with similar results. Quantitative results on both these
domains exhibit similar trends as those in Table 1.
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Figure 5: (A): 60 days of data for 22 drug categories aggregated over all zipcodes in the city. (B):
60 days of data for a single drug category (cough/cold) for all 29 zipcodes in the city. (C): Sunspot
numbers for 200 years separately for each of the 12 months. The training data (top), simulated
output from constraint generation, output from the unstable least squares model, and output from
the over-damped LB-1 model (bottom).

6 Discussion

We have introduced a novel method for learning stable linear dynamical systems. Our constraint
generation algorithm is more powerful than previous methods in the sense of optimizing over a
larger set of stable matrices with a suitable objective function. In practice, the benefits of stability
guarantees are readily noticeable, especially when the training data is limited. This connection
between stability and amount of training data is important in practice, since time series data is often
expensive to collect in large quantities, especially for phenomena with long periods in domains like
physics or astronomy. The constraint generation approach also has the benefit of being faster than
previous methods in nearly all of our experiments. One possible extension is to modify the EM
algorithm for LDSs to incorporate constraint generation into the M-step in order to learn stable
systems that locally maximize the observed data likelihood. Stability could also be of advantage in
planning applications.
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